Lower Class Sequences for the Skorohod-Strassen Approximation Scheme

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Stein approximation for Itô and Skorohod integrals

We derive conditional Edgeworth-type expansions for Skorohod and Itô integrals with respect to Brownian motion, based on cumulant operators defined by the Malliavin calculus. As a consequence we obtain conditional Stein approximation bounds for multiple stochastic integrals and quadratic Brownian functionals.

متن کامل

Confidence Intervals for Lower Quantiles Based on Two-Sample Scheme

In this paper, a new two-sampling scheme is proposed to construct appropriate confidence intervals for the lower population quantiles. The confidence intervals are determined in the parametric and nonparametric set up and the optimality problem is discussed in each case. Finally, the proposed procedure is illustrated via a real data set. 

متن کامل

Upper and Lower Class Sequences for Minimal Uniform Spacings

In this paper we investigate the asymptotic behavior of the k-th smallest uniform spacing. Among other things, a complete characterization of upper and lower class sequences is obtained. The asymptotic behavior is similar in many respects to that of the minimum of independent uniformly distributed random variables. Let X1 , . . . ,X , be independent identically distributed uniform (0, 1) random...

متن کامل

A non-Skorohod topology on the Skorohod space

A new topology (called S) is defined on the space ID of functions x : [0, 1] → IR1 which are right-continuous and admit limits from the left at each t > 0. Although S cannot be metricized, it is quite natural and shares many useful properties with the traditional Skorohod’s topologies J1 and M1. In particular, on the space P(ID) of laws of stochastic processes with trajectories in ID the topolo...

متن کامل

The Solovay–strassen Test

The Jacobi symbol satisfies many formulas that the Legendre symbol does, such as these: for a, b ∈ Z and odd m,n ∈ Z+, (1) a ≡ b mod n⇒ ( a n) = ( b n), (2) ( n ) = ( a n)( b n), (3) (−1 n ) = (−1) (n−1)/2 and ( 2 n) = (−1) (n2−1)/8, (4) ( n m) = (−1) (n ). But there is one basic rule about Legendre symbols that is not listed above for the Jacobi symbol: an analogue of Euler’s congruence a(p−1)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1974

ISSN: 0091-1798

DOI: 10.1214/aop/1176996505